
Analysis of simulation technique for steady shock waves in materials
with analytical equations of state

Evan J. Reed,1,* Laurence E. Fried,1 William D. Henshaw,2 and Craig M. Tarver1

1Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
2Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94550, USA

�Received 1 February 2006; published 20 November 2006�

We calculate and analyze a thermodynamic limit of a multiscale molecular dynamics based scheme that we
have developed previously for simulating shock waves. We validate and characterize the performance of the
former scheme for several simple cases. Using model equations of state for chemical reactions and kinetics in
a gas and a condensed phase explosive, we show that detonation wave profiles computed using the computa-
tional scheme are in good agreement with the steady state wave profiles of hydrodynamic direct numerical
simulations. We also characterize the stability of the technique when applied to detonation waves and describe
a technique for determining the detonation shock speed.
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I. INTRODUCTION

Progress in understanding the microscopic details and ki-
netics of shocked materials has been extremely difficult. The
states of matter found behind a shock front and the kinetics
of the formation of these states can determine the structure of
a steady shock wave. In general, these states and kinetics are
determined by the dynamical pathway that the material fol-
lows through the shock. When the material behind the shock
front is sufficiently close to equilibrium, it is possible to
consider the dynamical pathway as a time-dependent thermo-
dynamic trajectory through states with well-defined thermo-
dynamic quantities.

In many cases, shock waves in materials can be reason-
ably described as rapid jumps in state from the pre-shock
state to the post-shock state with transition periods on the
order of the Debye period. Examples include waves with
purely elastic deformation and shocks at very high tempera-
tures where a thermodynamically stable state is rapidly
reached. In other cases, shock waves in materials can be best
described by a much slower transition between the pre-shock
state and the final shock state. This transition occurs through
a sequence of intermediate thermodynamic states and mate-
rial phases at kinetic rates that are determined by the ther-
modynamic states and material phases. Examples of such
shocks are steady detonation waves in explosives where nu-
merous chemical species form from the beginning of the
shock to the end of the shock. The kinetics of the formation
of these species determine shock wave profile details.
Shocked material in a detonating explosive can take nano-
seconds or longer to reach a final reacted state, called the
Chapman-Jouguet state. Other examples of this type of wave
include plastic deformation waves with slow kinetics and
other chemically reactive systems like hydrocarbons �1�. Ex-
perimental measurements in such waves can potentially de-
pend on the time scale on which the measurements are made
�2,3�. It is the latter type of shock wave that we focus on in
this work.

Significant progress in understanding microscopic details
and kinetics of shock waves has been made through molecu-
lar dynamics simulations. A number of different techniques
exist for the molecular dynamics simulation of shock waves.
The most common of these schemes is a direct nonequilib-
rium molecular dynamics �NEMD� approach �see, for ex-
ample, Ref. �4��. The NEMD method involves creating a
shock at one edge of a large computational cell by assigning
some atoms at the cell edge a fixed velocity. The shock
propagates across the computational cell to the opposite side.
While the NEMD approach captures all the dynamics, the
simulation time is limited by the time required for the shock
to propagate from one side of the computational cell to the
other side. The computational work required by NEMD
scales at least quadratically in the evolution time because
larger systems are needed for longer simulations to prevent
the shock wave from reflecting from the edge of the compu-
tational cell and propagating back into the cell. When quan-
tum mechanical methods with poor scaling of computational
effort with system size are employed, this approach to shock
simulations rapidly becomes impossible.

Within the past few years, new types of shock wave simu-
lation techniques have been developed �5–7�. These tech-
niques utilize thermodynamic restraints �nonrigid con-
straints� on a computational cell that is usually smaller than a
NEMD computational cell. Rather than launching a shock
across the computational cell, these approaches constrain the
computational cell to thermodynamic jump conditions across
a shock. In addition to a Hugoniot-based energy restraint,
these techniques utilize a constant volume constraint �5�,
constant particle velocity restraint �6�, or constant stress �7�
restraint to converge to the final state of the shock wave.

We have developed a related molecular dynamics tech-
nique involving a Rayleigh-line thermodynamic restraint
�8,9�. In addition to the final state of the shock, this tech-
nique aims to go beyond treatment of the shock as a nearly
instantaneous change by capturing the intermediate states
found in shocks with slow kinetic processes like detonation
waves and other chemically reactive systems. This multiscale
technique combines atomistic molecular-dynamics simula-
tions with the Euler or Navier-Stokes equations to achieve*Electronic address: reed23@llnl.gov
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long simulation time and length scales. The thermodynamic
states of a molecular dynamics simulation cell are con-
strained to be those of a steady shock wave given by the
Euler equations. For clarity in this work, we will refer to this
technique as the multiscale shock technique �MSST�.

In this work, we derive a closely related, thermodynamic
limit version of the MSST that can be utilized in conjunction
with simple analytical equations of state instead of molecular
dynamics. While not strictly a multiscale method, we will
refer to this version as the thermodynamic-MSST �TMSST�
for clarity in this work because it is a limiting case of the
MSST. TMSST provides a simple testbed to assess the gen-
eral performance and stability properties of this multiscale
approach to shock simulation for a range of material types.
We utilize TMSST to compare steady shock wave profiles to
the steady shock wave profiles generated using fully hydro-
dynamic simulations. We also relate the stability of shock
waves to the stability of the technique for detonation waves.

II. COMPUTATIONAL SCHEME

A. Review of molecular dynamics scheme

In this section, we present essential details of the MSST in
Ref. �8� in preparation for derivation of a thermodynamic
limit in Sec. II B. We wish to constrain the thermodynamic
states of a molecular dynamics computational cell to the
thermodynamic states that exist within a steady shock de-
scribed by continuum theory. The thermodynamic states of a
steady shock in a continuum can be calculated from the Eu-
ler equations for compressible flow,

d�

dt
+ �

�u

�x
= 0, �1�

du

dt
+ ṽ

�p

�x
= 0, �2�

dẽ

dt
+ p

dṽ
dt

= 0. �3�

Here, � is the density, u is the local material velocity, ṽ
=1/� is the specific volume, p is the uniaxial stress
�p=−�xx�, ẽ is the energy per unit mass, and complete time
derivatives are d

dt � �
�t +u �

�x . These equations represent the
conservation of mass, momentum, and energy, respectively,
everywhere in the wave.

We seek solutions of the Euler equations that are steady in
the frame of the shock wave moving at speed vs by making
the substitution x→x0+vst. This substitution, and integration
over x, yields a variation of the Hugoniot relations,

u − u0 = �vs − u0��1 −
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�
� , �4�
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�
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�0
−

1

�
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2
�1 −

�0

�
�2
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Variables with subscripts 0 are the values before the shock
wave and we take u0=0, i.e., the material is initially at rest in
the laboratory frame. In the terminology commonly used in
shock physics, Eq. �5� for the pressure is the Rayleigh line
and Eq. �6� for the energy is the shock Hugoniot at constant
shock velocity. These equations apply to a time-independent
steady state wave moving at speed vs. We wish to constrain
the thermodynamic states of a molecular dynamics simula-
tion to obey these relations.

In Ref. �8�, we showed that a molecular dynamics simu-
lation can be constrained to the thermodynamic states of a
steady shock by constraining the stress and energy of the
molecular dynamics simulation to Eqs. �5� and �6�, respec-
tively. This was accomplished by establishing Hamiltonian-
based equations of motion for the atoms and the volume
degrees of freedom. The total energy of the molecular dy-
namics system per unit mass �equivalent to the Hamiltonian
divided by the total mass of the computational cell M
��imi where mi are the atom masses� is

Ẽ = ẽ�	r�i̇
,	r�i
� +
1

2
Qv̇̃2 −

vs
2

2
�1 −

ṽ

ṽ0
�2

+ p0�ṽ − ṽ0� , �7�

where dots denote time derivatives, Q is a masslike param-
eter for the motion of the volume �with units of
mass2 / length4�, ẽ is the energy per unit mass
�Mẽ��i

1
2mir�̇i

2+��	r�i
��, and the 	ṙ̃i
 and 	r̃i
 are the veloci-
ties and positions of the atoms. Equation �7� is a conserved
quantity. We utilize the scaled coordinate scheme of Ander-
sen �10,11� to couple the volume to the atomic positions,

r�i � As�i, �8�

r�̇i � As�̇i, �9�

where s� is the scaled position �ranging from 0 to 1� of the
atom within the computation cell and A is a matrix contain-
ing the computational cell lattice vectors in columns. Com-
putational cell volume per mass is ṽ=det�A� /M. The volume
equation of motion was shown to be

v̈̃

ṽ0

=
1

Q

�−
� ẽ

� ṽ
�	r�i̇
,	r�i
� − p0�

ṽ0

−
vs

2

Qṽ0
2�1 −

ṽ

ṽ0
� . �10�

Note that
�ẽ�	As�i̇
,	As�i
�

�ṽ =
�ẽ�	s�i̇
,	s�i
,ṽ�

�ṽ since only uniaxial strain on
A in a fixed direction is allowed; therefore A has one degree
of freedom which we choose to denote by ṽ.

The equation of motion of the atoms �specialized to the
case of an orthorhombic computational cell� is calculated
from the Hamiltonian based on Eq. �7�,

As�̈i = −
1

mi

��

�r�i

− 2Ȧs�̇i, �11�

where − ��
�r�i

is the force on atom i due to the interaction po-
tential �.
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B. Thermodynamic limit of the molecular dynamics scheme

In this section, we calculate a thermodynamic limit of the
scheme presented in the previous section by replacing the
microscopic variables with thermodynamic variables. This
thermodynamic limit variant, TMSST, will be used in subse-
quent sections to demonstrate properties of this multiscale
approach to steady shock simulation.

If the molecular dynamics system is in thermodynamic
equilibrium, the pressure can be written

� ẽ�	s�i̇
,	s�i
, ṽ�
� ṽ

→
dẽ�T, ṽ,	� j
�

dṽ
�12�

= � ẽ

� ṽ


T,	�j

+  � ẽ

�T


ṽ,	�j


dT

dṽ

+ �
j
 � ẽ

�� j


ṽ,T,	�i�j


d� j

dṽ
�13�

=− p�T, ṽ,	� j
� �14�

in the �fluctuationless� infinite particle number limit where
the 	� j
 are additional thermodynamic variables, e.g., reac-
tion parameters for chemical reactions or phase transitions.
Equation �10� becomes,

v̈̃

ṽ0

=
1

Q

p�T, ṽ,	� j
� − p0

ṽ0

−
vs

2

Qṽ0
2�1 −

ṽ

ṽ0
� . �15�

The Rayleigh condition Eq. �5� can be recovered from Eq.

�15� in the case v̈̃→0 and v̇̃→0. The volume exhibits stable,
damped oscillations about the Rayleigh line. The Hugoniot
energy condition Eq. �6� can be recovered from Eq. �15� by

substituting dẽ
dṽ = ė̃ / v̇̃ and integrating over time. Therefore Eq.

�15� satisfies both constraint Eqs. �5� and �6� when thermo-

dynamic equilibrium exists and v̈̃→0 and v̇̃→0. In these
cases, the volume and energy track the Rayleigh line and
Hugoniot energy condition as the thermodynamic state
changes and the thermodynamic trajectory is not signifi-
cantly influenced by the choice of empirical parameter Q.

Equations of motion for T and 	� j
 must also be provided.
For the molecular dynamics scheme, an equation of motion
for the temperature can be directly calculated from the ki-
netic energy of the atoms,

kBṪ =
d

dt�2

3

1

N
�

i

1

2
mir�̇

2� �16�
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3
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N
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2

3
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ṽ
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2
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i
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, �18�

where we have used the equation of motion for the atoms,
Eq. �11�. Assuming thermodynamic equilibrium is estab-

lished and taking the infinite particle limit where Ṫ

= Ṫ�ṽ , 	� j
 , v̇̃ , 	� j
˙ �, we replace the second term on the right
side of Eq. �18� with thermodynamic terms,

Ṫ

T0
= − �

T

T0
� v̇̃

ṽ
� +

��v̇̃2

c̃vT0ṽ
+

q̃�̇

c̃vT0

. �19�

Here, � is a Gruneisen parameter which is equal to 2
3 for an

ideal atom gas �i.e., the first term on the right side of Eq.
�18��, �� is a material viscosity parameter ���=��+ 4

3�
where � and �� are the first and second viscosity coeffi-
cients, respectively, of the Navier-Stokes equations �12��,
and we have assumed there is a single chemical reaction 0
���1 that releases energy per unit mass q̃ �see, e.g., Ref.
�13��. The heat capacity at constant volume per unit mass is
c̃v. The motivation for the particular form of the viscous term
is provided in the next paragraph. Equation �19� represents a
specialization of the equations of motion to a particular ma-
terial system.

For the simple case of ẽ= c̃vT and q̃=0, the pressure cal-

culated using Eq. �19� is p=− dẽ
dṽ =− ė̃

v̇̃
=�c̃v

T
ṽ −��

v̇̃
ṽ where

�c̃v
T
ṽ is the thermodynamic component and ��

v̇̃
ṽ is a viscous

component. While the pressure calculated in a molecular-
dynamics simulation contains a viscous component, the pres-
sure in continuum scale modeling is usually considered to be
the thermodynamic component only. The viscous component
in continuum modeling is usually introduced explicitly in the
equations of motion through the substitution p→pT−��

�u
�x in

Eqs. �2� and �3� to obtain the Navier-Stokes equations with
no thermal diffusion. In this case, Eqs. �4� and �6� remain
unchanged and the Rayleigh line condition for a material
element flowing through the shock wave, Eq. �5� becomes

pT −
��

ṽ
v̇̃ − p0 = �u0 − vs�2�0�1 −

�0

�
� , �20�

where pT is the thermodynamic pressure. The viscous pres-
sure −��

�u
�x has been evaluated in the moving reference frame

of the material where �
�x =− 1

vs−u
�
�t . Therefore the form of the

viscous term in Eq. �19� is identical to that of the viscous
terms in the Navier-Stokes equations. This term accounts for
the irreversible production of heat upon shock compression.
While the stress in the molecular dynamics simulations con-
tains some viscous component, this can be supplemented
with explicit, Navier-Stokes-type viscosity where the viscous
parameter �� is empirically chosen.

For the equation of motion for �, we take an Arrhenius
rate law,

�̇ = � exp�− �a

kBT
��1 − �� . �21�

Equations �15�, �19�, and �21� integrated together along with
an equation of state for ẽ�T , ṽ ,�� provide the time depen-
dence of the thermodynamic variables. At each time step 	t,
the basic form of the Verlet algorithm �14,15� can be used to
integrate Eq. �15� followed by integration of Eq. �19� using

the expression T�t+	t�=T�t−	t�+2Ṫ�t�	t and the analo-
gous expression to integrate Eq. �21� with 0���1. In our
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experience, integration of these equations occurs sufficiently
fast that a higher order algorithm is unnecessary.

Once the time dependence of T�t� and ṽ�t� have been
computed, the particle speed u�t� can be computed using Eq.
�4�. Spatial profiles of waves can be computed with

x�t� = − �
0

t

�vs − u�t���dt�. �22�

We note that in the case where the viscous portion of the
stress is explicitly defined, the empirical parameter Q can be
eliminated by considering the limit Q→0. In this over-
damped limit, the volume equation of motion reduces to

��v̇̃ = ṽ�pT − p0 −
vs

2

ṽ0
�1 −

ṽ

ṽ0
�� . �23�

In this case, the shock solution can be computed using no
empirical parameters. However, in this work, we solve Eq.
�10� with nonzero Q in the spirit of the molecular dynamics
simulations since the viscous component of the stress in the
molecular dynamics case cannot be explicitly expressed. In
this work, we choose Q sufficiently small to be in the over-
damped limit of Eq. �10� where the solution is independent
of the precise value of Q and is given by Eq. �23�.

C. Stability of simulated waves

The technique presented in the previous section is de-
signed to simulate steady solutions. It is possible to also
show that these solutions obey the mechanical stability con-
ditions of a shock wave. This section shows that the con-
straint technique takes the system through states that satisfy
these stability conditions.

There are two criteria for the mechanical stability of a
shock wave �16�. The first criterion requires vs
c0, where c0
is the speed of sound in the pre-shock material. The second
criterion requires c1+u1
vs, where the subscript 1 denotes
the post-shock state. The condition that vs�c0 can be physi-
cally motivated by considering the propagation of sound
waves in front of the shock. If vs�c0, then pressure waves
from behind the shock front can propagate out in front, re-
sulting in an increase of the shock front width and eventual
decay of the shock front. Behind the shock, if c1+u1�vs the
shock front propagates faster than the speed of sound waves
behind it. Compressive energy �in the form of a piston driv-
ing the shock, etc.� behind the shock cannot reach the shock
front, resulting in a decay of the shock pressure and eventual
dissipation.

The equation of motion for the volume Eq. �10� can be
shown to constrain the system to thermodynamic states that
satisfy the conditions for mechanical shock stability. As an
example, consider a shock from state A to state B of Fig. 1.
Figure 1 shows Rayleigh lines on a schematic shock Hugo-
niot for a reactive system with a single reaction parameter �.
First consider only the unreacted �=0 Hugoniot. Equation
�10� indicates that volume increases or decreases depending
on the relation between the stress �approximately given by
the Hugoniot line in Fig. 1� and that of the Rayleigh line
stress �given by the straight lines in Fig. 1�. When the simu-

lation begins at state A, shock compression will occur if the
Rayleigh line is above the Hugoniot in pressure-volume
space and the volume is initially slightly on the compressed
side of the volume of state A. The slope of the Rayleigh line
is −vs

2 / ṽ0
2. The Hugoniot and isentrope have a first-order tan-

gent at point A �16�, providing a Hugoniot slope of −c0
2 / ṽ0

2 at
state A. Therefore the stability condition vs
c0 must be sat-
isfied at point A if compression proceeds up along the Ray-
leigh line since the slopes obey the condition −vs

2 / ṽ0
2

�−c0
2 / ṽ0

2 which implies vs
c0. If the shock speed is chosen
such that vs�c0, then point A is a stable point of Eq. �10�
and no compression will occur.

The volume equation of motion Eq. �10� has stable points
�where compression stops� at states where the Rayleigh line
intersects the Hugoniot and the Rayleigh line slope magni-
tude is less than the Hugoniot slope magnitude. Point B in
Fig. 1 is an example of such a state. It can be shown that this
condition on the Rayleigh line and Hugoniot slopes requires
u1+c1
vs which is the stability condition behind the shock
front �16�. Therefore Eq. �10� has stable points only where
the shock wave mechanical stability conditions are met.

Prior knowledge of the sound speeds is not required when
beginning a simulation. If compression occurs at state A,
then the stability condition there is satisfied. If compression
stops at state B, then the stability condition there is satisfied.
A Hugoniot-based constraint technique that follows any
other thermodynamic pathway �e.g., constant volume, par-
ticle velocity, or stress� does not provide solutions with this
property which prevents unphysical thermodynamic condi-
tions in materials where split shocks can form �8�. Note that
as a consequence of the instability at point A of Eq. �10�,
runaway expansion on the tensile strain side of state A is a
possible solution. Such an expansion solution may have
physical significance if there exists a larger volume where
Eq. �10� has a stable solution. Such solutions are expansion
shocks and have been predicted to be observable in materials
where the Hugoniot has the property that �2p

�v2 �S�0 in some
region �12�. However, we focus on the compressive shock
solutions. To allow only compressive shock solutions, we
begin the simulation with the volume slightly compressed

FIG. 1. Rayleigh lines on a Hugoniot for a chemically reactive
system with reaction parameter �. The �=0 Hugoniot represents the
unreacted material and the �=1 Hugoniot is fully reacted. The
straight Rayleigh lines describe the p-V space thermodynamic path-
way of a steady shock.
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past point A �we use Vstart= �1−10−3�V0 to bias the simulation
to proceed along the compressive branch of the Rayleigh line
rather than the expansive branch�.

Now consider the case when a single chemical reaction
occurs, characterized by the reaction parameter 0���1. As
the reaction occurs, � changes continuously from 0 to 1
forming a family of Hugoniots, of which the �=0 and �=1
Hugoniots are shown in Fig. 1. Chemical reactions or phase
transformations often occur on time scales much slower than
the time scale of initial shock compression at the leading
edge which molecular-dynamics simulations have shown to
be as short as the 100-fs time scale �17,18�. In these cases,
the thermodynamic state of the system rapidly advances
from state A to state C, for example, and subsequently fol-
lows the Rayleigh line down in pressure to state D as the
chemical reaction occurs. This scenario represents an over-
driven detonation wave. If this reaction occurs on a time
scale much longer than the initial compression time scale,
the constraint equations will constrain the thermodynamic
state of the system to the intersection of the Rayleigh line
and the instantaneous, partially reacted Hugoniot at all times.

A particular Rayleigh line is tangent to the �=1 shock
Hugoniot, as in the case of a shock from state A to state E to
state F. In this case, the final state of the shock �state F� has
the property that u1+c1=vs, a condition of instability. This is
commonly referred to as the Chapman-Jouguet state or the
sonic plane of the shock. Within the detonation model of
Zeldovich, Von Neumann, and Doering, this solution repre-
sents the detonation velocity �13�. Rayleigh lines associated
with shock speeds smaller than this critical value �like the
one from state A to state B� do not intersect the Hugoniot for
� larger than some value. In this case there are no steady
solutions that satisfy the shock mechanical stability criteria
and the volume equation of motion Eq. �10� will force the
volume to grow without bound. Therefore the detonation
shock speed can be determined using this technique by per-
forming a series of simulations at various shock speeds.
Simulations with well-behaved volume trajectories are above
the detonation speed and simulations where the volume
blows up to infinity are unphysical �because there is no
steady shock solution� and performed at a shock speed less
than the detonation speed.

III. APPLICATIONS

A. Ideal gas detonation

In this section, we apply the technique to the calculation
of a detonation profile for an ideal gas with a single, energy
releasing reaction. We utilize the equation of state

ẽ = c̃vT − q̃� , �24�

p = −
ė̃

v̇̃
= �c̃v

T

ṽ
− ��

v̇̃

ṽ
, �25�

where �=0.2, q̃=50p0ṽ0 is the energy released by a single
chemical reaction with order parameter 0���1. The reac-
tion rate obeys an Arrhenius rate law, Eq. �21�, with activa-

tion energy barrier �a=3.33kBT0 and �=5.8109 s−1 is the
kinetic pre-factor for the reaction. We take T0=300 K, p0
=105 Pa, and ṽ0=0.890 m3/kg. The viscosity ��=3
10−6 kg/ms and c̃v=n0kB / ��0��=5n0kB /�0 for this ideal
gas �n0 is the initial number density�.

Figure 2 shows a profile computed for a detonation wave
using the TMSST technique at shock speed vs=6.22c0
=2033.71 m/s. This shock speed is the Zeldovich, Von Neu-
mann, and Doering model detonation speed �13�. The param-
eter Q in Eq. �10� was chosen to be 810−20 kg2 /m4 which
provides the overdamped solution, i.e., the parameter Q has
no effect on the computed solution. Choosing a larger value
of Q results in volume oscillations that decay with time to
the overdamped solution. During the first 10 ps of the start of
the simulation, rapid compression occurs with little chemical
reaction. From this point on, the thermodynamic state
changes on a much slower time scale associated with the
chemical reaction rate.

Figure 2 compares wave profiles computed with the
TMSST to the steady-state profile computed using a hydro-
dynamic direct numerical solution of the Euler equations for
the same final particle velocity u1. Agreement between the
two techniques is excellent. The hydrodynamic direct simu-
lations were performed using the OVERBLOWN adaptive nu-
merical scheme for reactive flow on overlapping grids
�19,20�. Simulations started with a detonation wave profile
that approximates the expected steady state profile and al-
lowed us to propagate until a steady state was reached. Spa-
tial profiles were computing using Eq. �22�.

The OVERBLOWN software solves the Euler equations us-
ing a Godunov finite difference scheme containing some ar-
tificial viscosity introduced by the integration scheme. The
viscosity approximates the second order viscosity term of the
Navier-Stokes equations �21�. The amount of viscosity is de-
termined by the grid spacing. The initial rise time of the
shock wave �at the start of the chemical reaction, 0 �m in
Fig. 2� is determined by the degree of viscosity. The viscos-

FIG. 2. Comparison of ideal gas detonation wave profiles cal-
culated using the TMSST technique and the steady state of hydro-
dynamic direct numerical simulations. Excellent agreement is
achieved behind the shock front.
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ity in the direct hydrodynamic simulations is similar to the
viscosity in the TMSST simulations because we have chosen
the grid spacing in the hydrodynamic simulations to provide
an initial shock rise time similar to that observed in the
TMSST simulations. We find that viscosity plays little or no
role in the wave profile after the initial shock rise.

We find that the TMSST can be used to compute detona-
tion wave profiles for large activation energies �e.g., �a
=50kBT0� as easily as for smaller activation energies. How-
ever, we find that increasing the activation energy beyond
about �a=3.33kBT0 �with fixed q̃� can result in unsteady
wave propagation in the hydrodynamic direct simulations.
This behavior is characterized by oscillatory or chaotic fluc-
tuations in wave profiles and a lack of a moving reference
frame in which the detonation wave is steady. Unsteady be-
havior in one-dimensional �1D� weakly overdriven detona-
tions in high activation energy gaseous mixtures is well
known and has been connected to the formation of a cellular
detonation structure in higher dimensional simulations �see,
e.g., Ref. �22� and references therein�. While the solutions
computed using the TMSST obey the Euler equations for
steady waves, they are not necessarily stable with respect to
perturbations in the wave profile. The TMSST provides no
information about the stability of computed wave profile
with respect to profile perturbations.

B. Condensed phase detonation

In this section, we consider a detonation propagating
through a model condensed phase explosive, like HMX or
RDX, given by the equation of state

ẽ = c̃vT +
�

2

�ṽ − ṽ0�2

ṽ0

+
�

3

�ṽ − ṽ0�3

ṽ0
2 − q̃� , �26�

p = �
�ṽ − ṽ0�

ṽ0

+ �
�ṽ − ṽ0�2

ṽ0
2 +

�c̃vT

ṽ
− ��

v̇̃

ṽ
. �27�

This equation of state �including Eqs. �19� and �21�� has a
Mie-Gruneisen form. Mie-Gruneisen equations of state have
been used to model high-temperature solids, where the tem-
perature exceeds the Debye temperature �23�. We choose �
=−95 GPa, �=52.5 GPa, �=0.5, c̃v=1.5585 J /g /K, q̃
=4 kJ/g, �a=8.3415kBT0, and �=9109 s−1. For the initial
state of the simulation, we take T0=300 K, ṽ0=10−3 m3/kg.
The viscosity parameter is �=0.3 kg/ms and the shock
speed is vs=11 km/s.

The parameter Q in Eq. �10� was chosen to be 6
10−12 kg2 /m4 which provides the overdamped solution,
i.e., the parameter Q has no effect on the computed solution.
Choosing a larger value of Q results in volume oscillations
that decay with time to the overdamped solution. As in the
ideal gas case, the grid spacing of the hydrodynamic direct
simulations was chosen to provide a viscosity that produces a
shock front rise distance similar to the TMSST simulations.

Figure 3 compares detonation wave profiles to the steady
state profile computed using hydrodynamic direct numerical
solutions for the same final particle velocity u1. Agreement
between the two techniques is good. As in the ideal gas case,

we expect agreement to be best for the region behind the
shock front where the relatively slow chemical reaction oc-
curs and viscosity plays little role.

Figure 4 shows a comparison of the thermodynamic
pressure-volume space trajectory of the steady state wave of
direct hydrodynamic simulations to the TMSST technique.
Plotted is the thermodynamic pressure only, with no viscous
component. The simulation begins at V

V0
=1 and proceeds up

in pressure as compression occurs. The difference between
the thermodynamic pressure and the Rayleigh pressure at a
given volume is equal to the viscous pressure, i.e., the last
term on the right hand side of Eq. �27�. Once initial com-
pression has occurred, the chemical reaction occurs and the

FIG. 3. Comparison of model condensed phase explosive deto-
nation wave profiles calculated using the TMSST technique and the
steady state of hydrodynamic direct simulations. Excellent agree-
ment is achieved behind the shock front.

FIG. 4. Comparison of the thermodynamic pressure-volume
space trajectory of the steady-state wave of direct hydrodynamic
simulations to the TMSST technique. The Rayleigh line is shown
by the dotted line. The simulation begins at V

V0
=1 and proceeds up

in pressure as compression occurs. Once initial compression has
occurred, the chemical reaction occurs and the trajectory proceeds
down the Rayleigh line. Since the chemical reaction results in vol-
ume changes slow enough for viscous effects to be negligible, the
thermodynamic pressure is equal to the Rayleigh pressure during
the chemical reaction portion of the shock.
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trajectory proceeds down the Rayleigh line. Since the chemi-
cal reaction results in volume changes slow enough for vis-
cous effects to be negligible, the thermodynamic pressure is
equal to the Rayleigh pressure during the chemical reaction
portion of the shock.

Similar to the ideal gas case, we find that the TMSST can
be used to compute detonation wave profiles for physically
reasonable large activation energies �e.g., �a=50kBT0� as eas-
ily as for smaller activation energies. However, we find that
increasing the activation energy beyond about �a=9kBT0
with fixed q̃ can result in unsteady wave propagation in the
hydrodynamic direct simulations. While the TMSST com-
putes steady solutions for systems with large activation en-
ergies, it provides no information about the stability of these
solutions to profile perturbations.

Figure 5 illustrates how the Chapman-Jouguet or sonic
state �point F in Fig. 1� can be determined by performing
simulations at multiple shock speeds. Figure 5 shows simu-
lations at three different shock speeds using the TMSST with
the model condensed phase explosive. Shocks at speeds 11.1
and 11.0 km/s represent overdriven detonation conditions as
in the ACD path in Fig. 1. Shock speed 10.9 km/s is repre-
sented by path AB in Fig. 1 and is not a valid steady solution
after the reaction parameter � has increased beyond some
critical value. In this case, the TMSST volume diverges
when the shock-wave mechanical stability conditions are no
longer met, indicating there are no steady solutions for that
shock speed. In this fashion the shock speed that takes the
material to the sonic state �Rayleigh line AEF in Fig. 1� can
be determined by bracketing with no prior knowledge of the

equations of state or chemical reactions present. In the case
of Fig. 5, the shock speed that takes the system to the
Chapman-Jouguet state is between 10.9 and 11 km/s.

IV. COMPARISON TO OTHER STYLES OF
HUGONIOT-BASED CONSTRAINTS

A number of other styles of thermodynamic constraint
schemes have been proposed for the molecular dynamics
simulation of shock waves. In addition to a Hugoniot energy
constraint or restraint on temperature, these schemes addi-
tionally constrain or restrain the system to constant volume
�5�, constant stress �7�, or constant particle speed �6� rather
than the Rayleigh line restraint utilized in this work. Figure 6
shows a comparison between several styles of thermody-
namic constraining schemes for the model condensed phase
explosive of Fig. 3. The schemes utilized here for constant
volume and constant pressure are not identical to those of
Refs. �5,7�. The constant volume curve was generated by
solving the equation

c̃vṪ = ��ẽ − ẽ0 −
1

2
�p + p0��ṽ0 − ṽ�� �28�

in conjunction with Eq. �21� for �̇. Here, ṽ is chosen to be
the final volume of the shock wave. The constant pressure
restraint curve in Fig. 6 was generated using Eq. �28� for the
temperature evolution Eq. �21� for � evolution, and the fol-
lowing equation for volume evolution:

FIG. 5. Simulations at three different shock speeds using the
TMSST in a model condensed phase explosive. Shocks at speeds
11.1 and 11.0 km/s represent overdriven detonation conditions as
in the ACD path in Fig. 1. Shock speed 10.9 km/s is represented by
path AB in Fig. 1 and is not a valid steady solution. In this case, the
TMSST volume diverges when the shock wave mechanical stability
conditions are no longer met, indicating there are no steady solu-
tions for that shock speed. In this fashion the shock speed that takes
the material to the sonic state �Rayleigh line AEF in Fig. 1� can be
determined by bracketing with no prior knowledge of the equations
of state or chemical reactions present.

FIG. 6. Comparison of the time dependence of the thermody-
namic trajectory of a material element flowing through a steady
state wave in hydrodynamic simulations to various types of shock
thermostatting techniques. The TMSST of this work is unique in
that the intermediate states between the shock front and final state
of the shock are correctly captured leading to a wave profile in
agreement with hydrodynamic direct simulations. The model con-
densed phase explosive equation of state of Fig. 3 is utilized in
these simulations.
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v̈̃ =
1

Q
�p − pconstraint� − �v̇̃ , �29�

where pconstraint is the target pressure, taken to be the pressure
of the final thermodynamic state of the shock. The param-
eters �, Q, and � were chosen to damp fluctuations in the
thermodynamic state within about 100 ps. After this time, the
thermodynamic trajectories are independent of these empiri-
cal parameters since the chemical reaction changes the ther-
modynamic state on a slower timescale.

Figure 6 shows that constant volume and constant stress
approaches to thermostatting eventually achieve the correct
final state of the shock, but take a thermodynamic trajectory
to the final state that is different from the steady state wave
of hydrodynamic simulations. The Rayleigh restraint utilized
in the TMSST presented in this work captures the interme-
diate thermodynamic states in addition to the final thermo-
dynamic state as well as the correct time dependence of the
intermediate thermodynamic states. For a general equation of
state with unknown reactions and phase transitions, the ki-
netics and even the final state of the shock can be determined
by the thermodynamic pathway followed by the shocked ma-
terial. We believe the TMSST and MSST are well suited to
the study of such systems since they constrain the material
element to the thermodynamic states found in the shock
wave.

V. DISCUSSION AND CONCLUSION

In this work, we have considered equations of state with
reaction rates that depend only on the temperature. In gen-
eral, reaction rates can depend on other variables including
strain rates and spatial gradients which can be quite large in
shock waves. Some molecular dynamics simulations of
shock waves show that very large spatial gradients in strain

across a few atomic spacings can exist at the shock front
�see, for example, Refs. �17,18��. In the TMMST and MSST,
spatial strain gradients and spatial gradients in other thermo-
dynamic quantities are neglected. As discussed in Ref. �8�, it
is therefore necessary to make the assumption that the mate-
rial state and kinetics are not functions of spatial strain and
thermodynamic gradients. The latter assumption is likely to
be very good in liquids and molecular systems with little
shear strength. Most energetic materials fall into this
category. This assumption can potentially break down at
sharp shock fronts in materials with long range correlation
lengths. The latter type of system has not been addressed in
this work.

In this work, we derived and analyzed a thermodynamic
limit of a multiscale molecular dynamics based scheme that
we have developed previously for simulating shock waves.
We utilized a thermodynamic limit to validate and character-
ize the performance of the technique for several simple
cases. Using analytical model equations of state for chemical
reactions and kinetics in a gas and a condensed phase explo-
sive, we showed that detonation wave profiles computed us-
ing the computational scheme are in good agreement with
the steady state wave profiles of hydrodynamic direct nu-
merical simulations. We also characterized the stability of the
technique when applied to detonation waves and described a
technique for determining the detonation shock speed for a
chemically reactive equation of state about which nothing is
known a priori.
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